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Abstract

The purpose of this research is to continue our efforts in advancing the state of

knowledge in large eddy simulation (LES), direct numerical simulation (DNS) and

Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of

high-speed reacting turbulent flows. In the second phase of this work, covering the

period: September 1, 1993 - September 1, 1994, we have focused our efforts on two

research problems: (1) Developments of "algebraic" moment closures for statistical

descriptions of nonpremixed reacting systems, (2) Assessments of the Dirichlet fre-

quency in presumed scalar probability density function (PDF) methods in stochastic
description of turbulent reacting flows. This report provides a complete description of

our efforts during this past year as supported by the NASA Langley Research Center
under Grant NAG-l-l122.

Technical Monitor:

Dr. J. Philip Drummond, Hypersonic Propulsion Branch, Tel: 804-864-2298 is the Technical

Monitor of this Grant.
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1 Introduction

While this program is associated with research on several problems of current interest in

reacting turbulent flows, its primary objective is to facilitate the use of LES for the com-

putational analyses of practical high speed transport. With the evolution of our work,

sponsored by NASA for the past four years, it has become clear that to meet the needs of

this program it is required to make use of advanced, yet practical, stochastic and statistical

procedures in conjunctions with reliable computational procedures. The importance of the

these methods have become clear through the results of our most recent work on LES of

turbulent reacting flows) It is now well-established that many of the conventional closures

which work reasonably well in RANS 2 fail in LES. Thus, it has become clear that the first

step to be taken in any meaningful LES of reacting flows is to make sure that the moments

"up to the second order level" are modeled accurately. It must be noted that in none of the

previous contributions in LES, was this the subject of a detailed study (see Ref.3). In fact,

in almost all previous and concurrent contributions, only the "first" subgrid scale moment of

the transport variables have been the subject of modeling. That is, the approach is based on

a variation of the Smagorinsky 4 closure. Unfortunately the application of such closures does

not work in LES of reacting flows. In our efforts within the past year, we have made use of

the recent work of one of the Co-PI's of this proposal (D.B. Taulbee) in developing improved

algebraic models. In his previous work, Taulbee 5 shows that with the modeled dynamics

equations for the Reynolds stresses, it is possible to develop an improved explicit algebraic

Reynolds stress model that can predict many of the flow features more accurately than the

conventional models. This improvement is due to the fundamentals of the approach in that

the closure is based on transport equations for the higher-order moments. Therefore, more

physics is embedded in the equations. Furthermore, the extra degree of freedom provided by

the closure allows more adaptability in its optimization for predictive analysis. In fact, some

sample results in RefsJ '6 do show that these new models are superior to previous closures

in LES, even though the difference is not significant in RANS (also see Ref.2).

In LES of reacting flow phenomena in addition to the first two moments, the PDF of the
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scalarswithin the subgrid must also be specified. Thus, we have continued our work on

PDF modeling as well. Basedon our extensivework in the first phaseof this research_-9

we have establishedthat the most meaningful means of utilizing the PDP in LES is by

mean of describing and solving the transport equationsgoverningits evolution. However,

it has also becomeclear to us the most recent PDF procedure basedon the Amplitude

Mapping Closure of Kraichnan1°'11cannot be used for any type of practical applications

(nor can they be utilized in basic applications in flows with nonequilibrium chemistry).

Therefore,we have decidedto rely and focus on the conventionalCoalescence/Dispersion

methodology.12-14Work is underway in developingnumerical schemesbasedon the Monte

Carlo methodsto solvethe PDF within the subgrid in LES of reactingflows. We donot have

any substantiated results to report at this time. ttowever,wedo haveextensivenew results

in PDF modeling basedon "presumed methods". In particular, we have made a rather

extensivestudy in determining the capabilitiesand drawbacksof the Dirichlet frequency in

probability modeling of nonpremixed reacting flows. Our reason for this study is due to the

interest at NASA LaRC in the approach. In particular, we cite the work of Gaffney et al. TM

who have used the Dirichlet density for modeling of high speed reacting systems. We feel

that a detailed appraisal of this versatile density is in order, and we have made use of all

recent laboratory data for this purpose.

2 Summary of Achievements

Appendix I and Appendix II provide a complete write-up on our accomplishments on the two

components of this program. For the convenience of the reader, here a summary is provided:

Our efforts in (1) have been devoted towards developing closures which can be used for mod-

eling of the "second order moments" in the contexts of both RANS and LES. In particular,

explicit algebraic scalar flux models that are valid for three-dimensional turbulent flows are

derived from a hierarchy of second-order moment closures. The mathematical procedure

is based on the Cayley-Hamilton theorem and is an extension of the scheme developed by
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Popelr and Taulbee.s Severalclosuresfor the pressure-scalargradient correlations are con-

sideredand explicit algebraic relations are provided of the velociW-scalarcorrelations in

both non-reactingand reactingflows. In the latter, the role of the Damkbhlernumber is ex-

plicitly exhibited in turbulent flowswith nonpremixedreactants. The relationship between

theseclosuresand traditional modelsbasedon the linear gradient diffusion approximation is

theoretically established.The resultsof model predictions areassessedvia comparisonwith

available laboratory data.

In efforts related to (2), the recent experimental data in Ref. TM pertaining to compositional

structure of a turbulent reactive scalar mixing layer are reproduced by a mathematical-

computational procedure utilizing the Pearson family (PF) of univariate and multivariate

PDF's. By detailed comparisons against these data and some additional data generated by

DNS of a spatially developing reacting mixing layer, an appraisal is made of the applicability

and the extent of validity of PF for statistical description of reactant fluctuations. In accord

with the experiment, a chemical reaction of the type A + B --+ Products is simulated in

isothermal, incompressible flows. A wide range of the DamkShler number is considered

including both frozen and equilibrium chemistry flows. The comparison of the results with

laboratory data indicates that PF generated PDF's are very convenient, in the absence of

better alternatives, for modeling the influence of turbulence on the reactant conversion rate.

In particular, the Dirichlet frequency provides the most reasonable means of portraying

the multivariate scalar PDF. The extent of agreement improves as the magnitude of the

DamkShler number is increased. A more detailed comparative assessment of the model

predictions against DNS data confirms the relative superiority of the Dirichlet PDF even

though it is mathematically shown that this frequency is invalid in equilibrium flows. With

the use of the PF generated PDF, the autospectral density function and the cross-spectra

density function (including both the coherence and the phase) of the reacting scalars under

equilibrium chemistry are related to frequency spectra of a conserved mixture fraction. This

relation is very convenient and is favored over previous models for predicting the spectral

characteristics of reacting scalars in the central region of the laboratory mixing layer and in

any other homogeneous flow configurations.
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The resultsof our work in both (1) and (2) are complete. Two papershave been written

and are submitted for publication.

3 Work in Progress

In addition to the main two topics discussed in the appendixes, work is in progress in two

other research areas: (1) LES by means of the Monte Carlo solution of the subgrid scalar

PDF, and (2) LES by means of mechanistic models. In (1), we have just completed the

development of a combined finite difference-Monte Carlo procedure for solving the PDF of

scalar variables within the subgrid. At this point, we are faced with one major problem and

that is the Monte Carlo solution of the advection term in the PDF transport. We have used

a first order upwinding scheme for this procedure. This methods is stable, but introduces a

significant amount of artificial diffusivity. In fact the amount of diffusivity introduced by the

scheme is more that by the subgrid closure. Unfortunately, none of the higher order schemes,

including all of those in Refs) 9'_° are amenable to Monte Carlo discretization. This serious

problem is the subject of our current investigation.

In (2), due to our recent progress in the area of diffusion flamelet modeling (DFM) 21-23 of

nonpremixed reacting flows, we have devoted a small portion of our time toward exploring

the possibility of developing subgrid scale closures by means of DFM. Based on our earlier

findings reported in Ref., 24 we expect that the model should work reasonably well in the

flamelet region; that is when the chemistry is fast and the thickness of the flame is very small.

In such cases, the LES methodology based on DFM is expected to be satisfactory. For this

purpose we have initiated a task in which typical mixing controlled chemistry models such

as those developed in Ref. _s are used in a dynamic subgrid model 26 for LES of homogeneous

reacting flows. We have completed the mathematical formulation to accomplish this task;

but we do not have any significant numerical data to report at the present time.

We hope to have results in each of these two endeavors before the deadline for our next

semi-annual report.
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Explicit Algebraic Scalar-Flux Models for

Turbulent Reacting Flows

V. Adumitroaie, D.B. Taulbee and P. Givi

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, NY 14260-4400

Abstract

Explicit algebraic scalar flux models that are valid for three-dimensional turbulent

flows are derived from a hierarchy of second-order moment closures. The mathemat-

ical procedure is based on the Cayley-Hamilton theorem and is an extension of the

scheme developed by Pope 1 and Taulbee. 2 Several closures for the pressure-scalar gra-

dient correlations are considered and explicit algebraic relations are provided of the

velocity-scalar correlations in both non-reacting and reacting flows. In the latter, the

role of the DamkShler number is explicitly exhibited in turbulent flows with non-

premixed reactants. The relationship between these closures and traditional models

based on the linear gradient diffusion approximation is theoretically established. The

results of model predictions are assessed via comparison with available laboratory data.

PACS: 47.27.Eq (Turbulence simulation and modeling), 47.70.Fw (Chemically re-

active flows), 47.27.Qb (Turbulent diffusion), 47.27.Nz (Boundary layer and shear tur-

bulence), 47.27.Wg (Jets) 02.10.Sp (Matrix theory).

I Introduction

Despite extensive recent contributions in direct and large eddy simulations of turbulent

reacting flows, the application of such simulations is limited to "simple flows', a-s Based on

this fact, it is now widely recognized that the "statistical" approach is still the most practical

means in computational turbulence, and future capabilities in predictions of engineering

turbulent combustion systems depend on the extent of developments in statistical modeling.

The literature on computational prediction of nonreactive turbulent transport, is abun-

dant with schemes based on single-point statistical closures for moments up to the second-



order, e'-l° The presence of scalar contaminant and/or chemical reactions generates additional

length and time scales which have to be considered. 3'11-1a To account for these scales in a

second-order moment formulation the solution of a large number of transport equations is

required. This could potentially make the approach less attractive, but can be alleviated

by utilizing "algebraic closures'. 1'2'17-22 Such closures are either derived directly from the

modeled transport equations of the respective moments, or other types of representations

that lead to anisotropic "eddy-diffusivities'.2a-26 In this manner, the number of equations is

reduced but the accuracy of the second-order formulation and the versatility of the approach

is preserved.

In this work, we expand upon the formulation developed by Taulbee 2 (also see Ref. 2_) to pro-

vide explicit algebraic relations for the flux of scalar variables in isothermal turbulent flows.

Both nonreacting and reacting flows are considered. In the latter, a second-order, irreversible

chemical reaction of the type A + B _ P is considered in turbulent flows with initially segre-

gated reactants. The closure explicitly accounts for the influence of the DamkShler number

and, of course, includes the mixing solution in the limit of zero DamkShler number. Several

closures for the pressure-scalar gradients correlations are considered and the predicted results

are compared with available experimental data in nonreacting and reacting turbulent shear

flOWS.

II Theoretical Background

With the convention that the angle brackets, ( ) represent the ensemble mean value of a

transport variable and the prime denotes its fluctuations from the mean, the nondimension-

alized averaged equations for incompressible, isothermal turbulent reacting flows are:

0(uj)
0xj =0, (1)

a(ui) a(ui)(uj) a(u_uj) 1 o(p) + 1 a2(ui)
at Oz_ O=_ (p) Oxi Re

i,j =1,2,3 (2)
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a<vo___)+ a<v_)<_j)= a(_;v') + 1 a:<v.)+ @°),
Ot axj axj ScRe DxjOzj

a= A,B. (3)

Here ui, P, p, Y_, Re, and Sc denote the i-th component of the velocity vector, the pressure,

fluid density, mass fraction of species a, the Reynolds number, and the Schmidt number,

respectively. (&_) represents the rate of chemical reaction (@a) = @S)):

(Cv,_) = - Da( (YA ) (YB ) + (YJ Y_ ) ), (4)

where Da is the Damk5hler number. The algebraic formulation involves a two-equation

scheme in which the Reynolds stresses and the scalar fluxes are expressed by nonlinear

functions of the mean gradients and the time scales of the flow. The mechanical time scale

is determined by the solution of transport equations for the kinetic energy of the turbulence

! ?(k) = (uiui)/2 and for the turbulent dissipation: (e) = For boundary-free shear

flow, these equations are: 9'27

o(k) o(k)(uA
--+

tOt tOz_ tO=j(uik)+ (fu;) + R, tO=_tO=_
, , tO(u,) 1 tOu_ tOu_. (5)

tO(E) tO(_)(Uj) tO [ 2 ( tOpt tOU;)] 1 tO2(_)

(0 , , ,,tO(u,) _ (_)2
-c,,-_u,uj_ _ "" (k)' (6)

with C,, = 1.4 and C,_ = 1.9. Treatment of the scalar variable requires the solution of
I I

additional transport equations for the reactants' covariance (y2y/_), and dissipations (e,_) =

1. (o__Y,o__). For the former we have:
_ctte_oar/ _/
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, , , , , o (Y_Y_)a(Y'Y/_)(_j) O(ujY'Y&)+ 1 : ' 'o(Y'Y&)+
Ot Oxj Oxj SeRe OxjOxj

-(ujY_) 0(II#) , , O(Y,_)_xj 2 (-_xj'OY_OY/3Oxj SeRe

(7)

By neglecting the third-order mass fraction correlations, the chemical source terms in the

expanded form read (no summation on greek indexes) @_Yt_) + @#Y') = -Da[((Y'Y_) +

(Y_Y_))(YB) + ((Y'Y_) + (Y/Y_))(Ya)]. Full resolution of the nonlinear interactions in the

chemical scalar fields requires significant computational effort in practical applications. The

neglect of the higher-order scalar fluctuations is justified by earlier results 2s but cannot be

recommended for general applications. In such applications, the single-point probability den-

sity function (pdf) or the joint pdf of the scalar variable provides the required information. _°

The inclusion of the pdf is not attempted here.

By using the first order term in the two-scale direct-interaction approximation, Yoshizawa 2s

develops a generic model for the scalar dissipation. An equivalent expression is obtained from

Yoshizawa's results (by making use of the dissipation time scales ratio r_ = e(Yff)/(k)_,_).

The equivalent form of this equation including the effects of chemical reactions is of the

form: 3°

0(,.#)
_+

Ot

(e) 1 [, ,, ,, O(Y#)

O(e,,#)(uj) ,O 1 O2(e_#)

+ (u,Y/,)_) - c,_ (k--5-,u,..j,o-_

(y.y_) (k)

In the limiting case of pure mixing, the magnitudes of the constants are: C m = 1.7, Ctn = 1.4,

C_3 = 2.0 and Cy4 = 0.9. Similar values are suggested in Ref. 3a In this equation, the chemical

source term source is of the form:

$o# = -Da [((co) + (e,_))(Y_) + ((e#) + (e_#))(Y,_)],a -_/3. (9)

4



Eachof the reactants' variancesobeya similar transport equation with the chemicalsource:

S,_,_= -2Da((eo)(Y_) + (eox))(Y_,)), (10)

where )_ = B if a = A and vice versa. To complete the closure formulation, all the third-

order transport terms are described by the gradient diffusion hypothesis. Denoting by O any

of the second-order scalars, we have:

where Ca is taken to be equal to 0.22 for all correlation type of quantities, whereas for the

turbulent dissipations, Ca = 0.18. Also, the molecular transport terms are neglected under

the assumption of high Reynolds-Peclet numbers flow.

III Explicit Algebraic Models

An improved explicit algebraic Reynolds stress model (ARSM) has been derived by Taulbee 2

from the modeled transport equation for the Reynolds stress. This model is based on the

general linear pressure-strain closure given by Launder et alY The improvement is due to an

extended range of validity; the model is valid in both small and large mean strain fields and

time scales of the turbulence. In two-dimensionai flows, Pope 1 was first to give an explicit

solution for the standard ARSM. The analogous improved ARSM as developed by Taulbee 2

reads:

= Is÷ (12)

Here, a = [aij] = [(u_u_)/(k) - 26_j/31 designates the anisotropic stress tensor, S = [Sij] =

10(u,)/0x_+o<uA/0x,] and a = [a,A = [o(=,)/o_-o(,,A/ax,] denote the mean flow strain

rate tensor and mean flow rotation rate tensor, respectively. $ (2) = [6!] }] = 1 for i = j = 1, 2

and 0 otherwise, r = (k)/(e) is the time scale of the turbulence and a = (SijSji) 1/2 is a

strain rate tensor invariant. The parameters Ct_ and g are given by:
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4g/15
C_,= l_._(blgra)2_2(b2grw)2 , g=[CI+C_2-2+(2-C,,)p/(e)] -1, (13)

where P = -(k)aijSji is the production of turbulent kinetic energy, w = (f_ij_ji)ID is

a rotation rate tensor invariant, and C1, bl and b2 are constants from the pressure-strain

correlation model (b_ = 0.086, b2 = 0.377). Lasher & Taulbee (private communication)

reffitted the expression for 6'1 proposed in Ref. s to six return-to-isotropy experiments and

four homogeneous shear flow experiments obtaining for the linear model:

C1 = 1.0 + F/18.0exp(-3.1/_'_l)(29.01og(1.0- 17.75(II + 7.15111))

where F = 1 + 27111/8 + 911/4 is a parameter involving the second invariant II = 1--_aijajl
and third invariant 11 - 1--.saijajkaki of the Reynolds stress anisotropy tensor, and Ret =

4(k)2/(9(_)v), the Reynolds number of the turbulence.

A similar line of reasoning is made to obtain an algebraic closure for the velocity-scalar inter-

actions. The transport equations governing these correlations are transformed into algebraic

expressions by making two primary assumptions: (1) Existence of a "near-asymptotic" state,

and (2) A negligible difference in the transport terms. The starting equations for the con-

vective scalar fluxes are described by:

I I I I I

a(uy g)'' + aiu,Y')(u_) =_ a((uju,Y') + (p'Y_)/(p)_ij)
cOt cOxj cOxj

1 I ,cOY_ \ [, , ,.O(Y.) , , CO(u,)\

-l-Re1 [ CO (,COu:_ y[__xj+ u:cOY_)] i-t-Sc(cOu:cOY_\Sc cOzj ScRe C&cjOzj I
(14)

In the rhs of this equation, the following terms are identified: turbulent transport, pressure-

scalar gradient correlation, production by the mean velocity and the mean scalar gradients,

chemical reaction effects, molecular transport (assumed negligible at high Peclet numbers)

and viscous dissipation. Based on the Poisson equation satisfied by the pressure fluctuations

one can arguably split the pressure-scalar gradient correlation into two parts corresponding

to so called rapid and slow terms, s The rapid term represents an inner product between the

velocity gradient tensor and a third-order tensor, the last one subject to symmetry, continuity

and normalization constraints. As suggested by Lumley, s since the slow pressure-scaiar

_r 6



gradient term andthe viscousdissipationterm arefunctions only of turbulent quantities, they

canbe incorporatedinto a singleclosure.The ensembleof the entire pressure-gradientterm

and viscousdissipation term enjoysa generalrelation encompassingsomeof the formulations

proposedin precedentworks. This is written consequently:

1 / ,OY'\ 1 + Sc/c3u_ c3Y'> = C,o, (e) (u_Y'),r,o= _ \p _/- s_n, \ oxjox_ 2 (k)

I .-=-ra<u,) , , + c_°!uA<u_V')+c3°(uA,,,._<u',y'>+ LC_dz_ <u_Y/_) Oz, Oz,

O(uk> O(ui) , ,.1
_-_-j ._,:(u,,Y:)] (15)+c4-_-_-zj(%(u'kY') + aki(u_Y')) +

The coefficients can take the following values: C1_ = 6.4, cl = 0.5, cl = 0, i = 2, 5; TM

C1_ = 18.0(1.0 + 130.O/ScRe)°'2s(1.0 + 12.5/Re°t'4s) -2"°s, ci = 0., i = 1,5, where Re, =

4(k)2/(<e)v); 32 or cl = 4/5, c2 = -1/5, c3 = 1/10, c4 = -3/10, cs = 1/5. _

To proceed, let us denote the mechanical-chemical correlation coefficient (normalized scalar

flux) by:

(u_V_) (16)

where (_) = ((Yff) + (y_2))/2 is the turbulent scalar energy. The results of direct numerical

simulations of homogeneous shear flow 32 suggest the existence of an asymptotic state for

the normalized correlation coefficient _0io, but not for the scalar flux itself. This observation

justifies our first assumption. The second approximation is yet to be substantiated. The

scalar flux equation can now be represented in terms of the correlation coefficient _i:, (a -_ fl),

written symbolically:

2 (k)_j _"_') P"

_ _2_-1 +P_+¢io+&_, (17)
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wherethe shorthand notations D/Dt, TiT , 7"7 and Tj stand for convective transport, tur-

bulent transport of scalar flux, scalar energy and kinetic energy, respectively. Moreover

P_ = -_/-_)(qg)(_ojaO(Ya)/Ozj + _pjsO(Ys)/Ozj) is the production of scalar energy, (e_) =

(ca) + (es) denotes the dissipation of scalar energy, 8_ = @aY,_) + (o)sY_) is the chemical

source term in the • equation, and the remaining quantities are the normalized production,

pressure-gradient and the chemical source term:

J (k)_.. 2 o(Yo)
= __ <*)' ,, + _,j) _s.(S_s + f_,_) (18)

-- Cla
(I)io = --_T _iot 3I- [(C1 3t- C2)Sij_jot -_- (C1 -- C2)_'_ij_jo

+(c3 + c4)a_sS_k_k_+ csajkS_j_ok_+ (c3 -- c4)ao'fljk_k_

+csa_kfllj_ko + c4ajkSjk_i,,]

Si_ = -Da(qoio(Yo) + _oi_(Yo) + 7io0 (_).

(19)

(20)

Here 71,,_ = (u_Y'Y%)/¢(k)(_)2 is the normalized covariance flux vector. Under the stated

assumptions, the terms representing the convective transport and the turbulence diffusion

difference are set to zero. This procedure leads to an algebraic system of equations for the

two unknown vectors _oio and qoi0:

(21)
_o0 + DoA_o 0 + B0_0o + C o = 0

where the coefficients are

Do

2rh,, 2rh O

1 + 2Daho(Yo)' Do = 1 + 2Daho(Yo ) (22)

B,, = Da(Y,_)D,_ B O = Da(Yo)Do, (23)

with

ho = ho = [Clc,- l + (l + 2c4)_)e)

s.)]i-_ ,(_) 1+ (_5,> ' (24)

-- 8



and the free vector terms read:

2rh_, ([-_' a 2_ , O(Y,_)

1+2z)a_h_IYo>_ -_5t _'+ _"_'J
2rh_,Da (_

+ 1 + 2Darh,_(Yt_) 7i,_,
(25)

Cit3= 1+ 2D--avht_(Y,_)_ -('_( ki+ -_Oki)

2rh_Da_/(--_

+1 + 2Darht3(Y,_ ) 7,,,_. (26)

Finally, the anisotropy of the turbulent diffusivity is ensured by the properties of the second

order tensor A:

Aik = [(1 -- Cl -- c2)Sik + (1 -- c, + c2)12ik -- (ca + c4)aijSjk

--CSakjSji -- (C3 -- c4)aij_jk -_- CSakj_ji]. (27)

This tensor turns out to be traceless (Aii = 0) as a consequence of incompressibility and

of the particular values taken by the constants ci's. Now, the solution of the system is

conveniently represented in the matrix form:

_o,, = -M-a [(6 + DpA)C_ - B,,Ct_ ]_o_ = -M -1 [(6 + D_A)C_ - B_C_]
(28)

where M denotes the matrix [(1 - B,_B_)6 + (Da + D0)A + DoDoA2]. The new expressions

for the turbulent fluxes of reacting scalars exhibits two novel features. First, there is a direct

influence of the DamkShler number Da, hence one can expect a higher flexibility of the

model with respect to chemistry. Second, the strong coupling existing between the evolution

of the reactants is reflected by the nonlinear dependence between the mean scalars and the

covariance flux in the closure.

To provide a computationally efficient algorithm, the matrix M is inverted analytically. This

is achieved via the use of the Cayley-Hamilton theorem and yields a vectorial expansion

9



defining a natural basisfor this problem:

In the Appendix the inversion procedurevia the Cayley-Hamilton theorem is outlined and
¢the coefficients an and a n are listed. The final results provide an explicit solution for the

scalar fluxes. In the limit Da _ co, the coefficients an become singular. In this limit, it

is recommend to use the mixing solution Da = 0 for the transport of a Shvab-Zel'dovich

variable, a4

IV Illustrative Examples

In this section, some sample results are presented of numerical simulations based on the mod-

els presented above. There are two primary reasons for conducting these simulations: (1)

Model assessments via comparisons with laboratory data, (2) Demonstration of the model

capabilities in comparison to traditional closures based on the linear gradient diffusion ap-

proximation. The flow configurations considered are those for which abundant laboratory

data are available: two-dimensional planar mixing layers under both nonreacting and non-

premixed reacting conditions, planar jets and axisymmetric jets. The mean flow motion in

all of these shear flows is assumed two-dimensional. The space coordinates are identified

by x = Ix, y/, x is the streamwise coordinate denoting the direction of principal evolution

of the flow, and y represents the cross-stream direction. The velocity field is identified by

1_ = [u, v]. In nonreacting flow simulations the mass fraction of one conserved species, YA

is considered. In the mixing layer configuration, YA = 1, 0 at the low-speed ((u / = uL),

and at the high-speed ((u) = un) streams, respectively. The magnitudes of r = un/uL

and/or Au = UH -- UL are set according to each of the experiments considered. In the jet

configurations, YA = 1 is issued from the jet into a surrounding of YA = O. In the reactive

mixing layer, the two species A and B are introduced into the low- and high-sped sides.

These species are assumed thermodynamically identical and there is no trace of one of these

species at the feed of the other one, i.e. complete initial segregation. The mass fractions of

the two species at their respective feeds are set equal to one. In accord with the reacting

flow experiments, the heat generated by the reaction is assumed negligible.

The transport equations governing the velocity and the scalar fields are of parabolic type

- 10



with the boundary-layer approximation. The numerical algorithm is basedon a first-order

upwind differencingfor the convectionterms and a second-ordercentral differencingscheme

for all the other terms. Dueto the anisotropiccharacterof the algebraicclosures,it is possible

to evaluateall the componentsof the Reynoldsstresstensorand the scalarflux vectors. The

Reynoldsstresstensor is predictedby the explicit ARSM solution asdevelopedby Taulbee.2

The scalarflux vectors arecomputedwith the solution given by Eq. (28). In this equation,

several different closures as given in RefsJ s'32'33 are used for the pressure-scalar gradient

correlation.

In the evaluation of the Reynolds stress tensor and the scalar flux vectors, the terms appear-

ing as model coefficients (e.g. P/(e) in Eq. (24)) are treated as known quantities. Therefore

an iterative numerical solution procedure is required. To insure a faster convergence and to

avoid numerical instabilities, the initial profiles are set close to those obtained by the simi-

larity solution. The implementation of the boundary conditions is similar to that in many

previous simulations of parabolic shear flows (e.g. Ref.2s). In the results presented below,

the spatial coordinates are presented by )7 for hydrodynamic and )7" for the scalar variables.

_-y(a=0.s) y-_((vA)=0.s) where fi = _ and x0 is the virtualIn the mixing layer, r/= _-_o , )7" = _-_o t_

origin. In the jet configurations r/= _._r.._ and )7" = v In these jets, the subscript_-_o' _((Ya)=o.s)"

CL denotes values at the centerline (i.e. y = 0). In the reacting mixing layers, the corre-

sponding profiles of YA under no chemistry is used in the normalization of the cross-stream

coordinate.

In Figs. 1-4, results are presented of nonreacting mixing layer simulations and are com-

pared with data obtained in several laboratory experiments. 3s-41 In these and all the figures

presented below, the transverse variations of statistical variables are presented. In this par-

ticular flow, the model with the coefficients of Ref. 32 yields a constant CI_ which is too

small for the numerical stability; the closure of Ref. 33 provides the best overall agreement.

Figures 1-4 indicate that the agreement between the model predictions and laboratory data

is generally good for the mean values of the streamwise velocity and the mass fraction of

a conserved scalar. The exception is the behavior near the high-speed stream of Masutani

and Bowman's 3s layer where the experimental results are underpredicted by the model. A

similar trend has been observed in previous simulations based on a linear gradient diffusion

model. 2s A larger skirt of the mean scalar profile is believed to be due dominant influence of

large scale structures in this particular experiment. 42,43 The model yields a better agreement

with the results of Batt's 36 experiment, in which the flow is less dominated by large scale
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structures. For the second order moments, the scatter in reported data does not allow a

precise comparison. In general, the trends are in accord with data and the agreement can

be potentially improved by modifying the magnitudes of turbulent scales at the boundaries.

Associated with the plateau in the measured mean scalar values of Masutani and Bowman, 3s

there is a double hump in the experimental scalar variance (Fig. 4(a)). The locations of these

humps coincide with regions of localized large mean scalar gradients. This behavior is cor-

roborated by direct simulations 4_'_ of two-dimensional, weak turbulent flows but cannot be

predicted by the model and is not observed in large Reynolds number experiments. _

The anisotropy of the Reynolds stress tensor and the scalar flux vector as predicted by

our model, allow a direct comparison of the predicted fluxes with data. Again, the general

agreement with laboratory data as witnessed in Figs. 5-7 is satisfactory. Moreover, with these

results it is possible to perform posteriori appraisal of the closures based on conventional

linear gradient diffusion hypothesis. For example, the parameters C_, and Sct as given by:

o(,,) (ks> (30)= -m oy ' = c. (,),

o(yo) (30(v'y')= Oy'

can be directly evaluated. The explicit algebraic relation for C, is given by Eq. (13); the

relation for the turbulent Schmidt number obtained from the model with coefficients of Ref. _

i5:

(32)

Figures 8-9 show the streamwise variations of these parameters. A somewhat similar qualita-

tive behavior is observed in the jet flows. These results can be compared with C_, = 0.09 and

Sc_ = 0.7 typically employed in the linear gradient diffusion approximations. 44,e Also, the

ratio of the scalar to velocity time scales (r,,) as shown in Fig. 10 indicates that an approx-

imate constant value can be used for the central region of the layer. This is in accord with

the results in Refs. 4s'46 However, there are large peaks near the free-streams. The amplitude

of the peaks can be somewhat controlled by modifications of the boundary conditions. An

exact specification of these conditions requires inputs from the laboratory measurements.
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The results for the reacting mixing layer are presented in Figs. 11-12, where comparisons are

made with experimental results, as Figure 11 indicates that the predicted mean mass fraction

of reactant A is in accord with data. Because of the consumption of the reactant by the

chemical reaction, the discrepancy near the free-stream as noted in Fig. 3 is not observed here.

Naturally, the second hump in the experimental profiles of the reactant's variance vanishes

as the species is consumed. The variance amplitude is, nevertheless, still underpredicted by

the model as shown in Fig. 12. The cross-stream variation of the reactants' covariance (the

unmixedness) as predicted by the model is shown in Fig. 13. In accord with the physics

of turbulent flows with segregated reactants, the unmixedness is negative throughout the

layer. The same is true in the limit of zero chemistry (mixing only) as shown in this figure.

However, in this case the amplitude of the unmixedness is slightly larger. This is not in

agreement with Toor's 4z'4s hypothesis which suggests an independency of unmixedness to

the DamkShler number, but is consistent with the more rigorous theories of nonpremixed

turbulent reacting systems 4a-52 which indicate dependence on the DamkShler number. The

results in Figs. 8-10 also suggest that chemistry induces a profound influence on the amplitude

of the model constants.

The measurement results pertaining to planar jet hydrodynamics as reported in Refs. sa-ss are

compared with the model predictions in Figs. 14 through 20. The agreement is reasonable

for the mean streamwise velocity and also the components of the Reynolds stress tensor. The

same level of agreement is witnessed in the profiles of the conserved scalar mean and variance

as compared with the experimental results of Refs. 56-6° In this case, it seems that the model

with the coefficients of Ref. aa provides the closest prediction of the scalar mean and variance

values. However, the predicted values of the amplitude of scalar-velocity correlation is larger

than some of the experimentally reported data.

The comparative assessment of the models for the prediction of axisymmetric jet flows is

provided in Figs. 21-27 where the experimental data in Refs. e1-_3 are used for hydrodynamics

variables and those in Refs. 64-e_ for scalar variables. Again, all the mean values are reasonably

well-predicted. The same is true for the Reynolds stresses and the scalar variance as the

model results are within the scatter of the data. In this configuration also the experimental

results for the scalar fluxes are overpredicted. However, the experiments of Ref. _ are not

conducted in the self-preserving regions of the jet. Therefore a definite verdict cannot be

reached without comparisons with further data.

From the preceding comparisons, it can be concluded that the algebraic model developed
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here provides an effective means of predicting the second-order moments in reacting turbulent

flows. Because of their anisotropic feature, these algebraic schemes are more flexible than

the conventional linear gradient diffusion schemes. The explicit nature of the relations,

facilitated by the Cayley-Hamilton theorem, is particularly convenient for simulating complex

flows. Additional improvement of these models is possible by fine-tuning of the pressure-

gradient correlation models, and also the higher order moments of scalar-scalar fluctuations

in reacting flows. Further extension of the model is recommended to account for the effects

of exothermicity in nonequilibrium chemically reacting systems.

Appendix

The procedure leading to explicit solutions for the scalar-flux vector, as governed by Eq. (21)

is described here.

Consider an arbitrary three-dimensional second-order tensor Q = [Qij] and the correspond-

ing Kronecker tensor 5 = [Sij]. According to the Cayley-Hamilton theorem, this matrix

satisfies its own characteristic polynomial:

q3_ IQQ2 + IIQQ- IIIQ5 = 0 (33)

where IQ {Q} = Q,,, IIQ = ½[{Q}2 {q2}] = ,= - _[Q,,QjI - Q,jQI+], IIIQ = _[{Q}a

3{Q}{Q _} + 2{Q3}] = _[QiiQjjQkk - 3QiiQjkQJ, j + 2QiiQjkQki] are the three tensorial

invariants. Multiplying the characteristic polynomial with Q-1 and solving for the inverse

we obtain:
1

q-1 _ IIIQ (q2 _ IQQ + IIQ$). (34)

This relation can be used now to find explicit solutions to the problem considered here. For

example, for the case with Da = 0 (pur mixing) we can write:

= -(6+ G)-'C, (35)

where G = D,A. Hence:

1

(5 + G)-' - GIII6+-[G2 + (2 --16+G)G + (i --16+G + I16+G)6]. (36)
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It is easy to show that IS+G = IG + {6}, IIs+G = 2IG + IIG + {5}, IIIs+G = IG + IIG +

IIIg + _ Therefore the normalized scalar flux vector takes the form:
3 "

_ = aoC + alGC + a2G2C (37)

with the coefficients:
I + IG + IIG

ao = 1 + 1(2,+ IIG + IIIG (38)

I+IG

a, = 1 + IG + IIG + IIIG (39)

1

a2 = 1 + IG + IIG + IIIG" (40)

In a homogeneous solenoidal field the pressure-gradient correlations are described by traceless

rapid parts. This further translates into {A} = 0, and thus:

1- ½{G2} (41)
ao= 1-½{G 2}+½{G 3}

1
(42)al

1 - ½{G 2} + ½{G 3}

1

a2 = -i - ½{G 2} + ½1G3}" (43)

The reacting case is somewhat more complex. Nevertheless, by following the same procedure

explicit solutions are obtained:

I 2_ = aoC_ + a_Cz + alAC_ + a_AC_ + a2A_C_ + a2A C_

t 2
_ =/_C_, + b_C_ + b, AC,_ + b'IAC _ + b2A2C,_ + b2A Ca,

with the coefficients:

(44)

(45)

a 0 ----

F_(F_, + D_ Ai_I$) + B,,B_ [ AJ_I2(D_Fo- ED_,)D_ - E(E + A:_I_DoD_)]

(1 - BoBa)(FoFa- E2B,,Ba)
(46)

n2 Ai6/l_
%= B, Fo(F_+"_ a J+ D_, A_-I_(DoFa- ED_)- EB,,B_(E + Ai_'I_DoD_)

(1- B,,B_)(F,,F_- E2B,,B_)
(47)

a I

BoB_[E(D_ - Do) + F,,D_] - D,,F_

Do(F_F_s- E2B,_B_)
(48)
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, B, D,F_ - DaFo - E(Dt3 - DoBoB_) (49)
al = Do F,_F_ - E2BoB_

DoF_ - EDoBoB_ (50)
a2 = F..F_ - E2BoB_

with the shorthand notations:

, FD____/_- ED_= -Bo (51)

F,= (I_ BoBz)(D, {2 2} 1
Do

BoBs) - D_
(52)

F_= (I _ B,_B_)(Dt3{A 2} 1
D_

BoBs) {A 3}
Do -D_ (53)

E=(1-_-D,_ + D---_)(1 - BoBz)- DoDt_ -{Aa} . (54)

The coefficients bi are obtained from the ai's through the permutations a _ /3, /3 --* a,
! ! I

ao _ b_, a o _ bo, al _ b_, a 1 _ bl, a2 ---* b_ and a 2 _ b2.
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Figure Captions

Figure 1. Cross-stream variation of fi for the mixing layer.

Figure 2. Cross-stream variation of (u'2) 1/2 for the mixing layer.

Figure 3. Cross-stream variation of (YA) for the nonreacting mixing layer.

Figure 4. Cross-stream variation of (y_2)1/2 for the nonreacting mixing layer.
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12. Cross-streamvariation

13. Cross-streamvariation

14. Cross-streamvariation

15. Cross-streamvariation

16. Cross-streamvariation

17. Cross-streamvariation

18. Cross-streamvariation

19. Cross-streamvariation

5. Cross-streamvariation of (u'v')/Au x 100 for the mixing layer.

6. Cross-stream variation of (v'2)l/2/Au for the mixing layer.

7. Cross-stream variation of (v'Y_)/Au for the nonreacting mixing layer.

8. Cross-stream variation of C_, for the mixing layer.

9. Cross-stream variation of Sct for the nonreacting and reacting mixing layers.

10. Cross-stream variation of ra for the nonreacting and reacting mixing layers.

11. Cross-stream variation of (Ya) for the reacting mixing layer.

of (Yaa) 1/2 for the reacting mixing layer.

of (YJ Y_) for the nonreacting and reacting mixing layer.

of (u)/(U)CL for the planar jet.

of (ua)/(u)_L for the planar jet.

of (u'v')/(u)_ L for the planar jet.

of (va)/(U)_n for the planar jet.

of (YA)/(Ya)CL for the planar jet.

of (Y_2)1/2/(YA)CL for the planar jet.

20. Cross-stream variation of (V'YJI)/(U)CL(YA)CL for the planar jet.

21. Cross-stream variation of (u)/(u)cL for the round jet.

22. Cross-stream variation of (ua)/(U)_L for the round jet.

23. Cross-stream variation of {u'v')/(u)_t, for the round jet.

24. Cross-stream variation of (v'_)/(U)_L for the the round jet.

25. Cross-stream variation of (YA)/(Ya)CL for the round jet.

26. Cross-stream variation of (Y_2)I/2/(YA)CL for the round jet.

27. Cross-stream variation of (v'Y,_)/(u)cL(Y,,t)vt, for the round jet.
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Abstract

Experimental data of Bilger et al. (1991) pertaining to the compositional struc-
ture of a turbulent reactive scalar mixing layer are reproduced by a mathematical-

computational procedure utilizing the Pearson family (PF) of univariate and mul-

tivariate scalar probability density functions (pdfs). Aided by comparisons against

these data and some additional data generated here by direct numerical simulation

(DNS) of a spatially developing reacting mixing layer, an appraisal is made of the

applicability and the extent of validity of the PF for the statistical description of the

reactant fluctuations. In accord with the experiment, a chemical reaction of the type

A + B _ Products is simulated in isothermal, incompressible flows. A wide range of

the DamkShler number is considered including both frozen and equilibrium chemistry

flows. The comparison of the predicted results with laboratory data indicates that the

PF generated pdfs are very convenient, in the absence of better alternatives, for mod-

eling the influence of turbulence on the mean reactant conversion rate. In particular,

the DiricMet frequency parameterized with the "scalar-energy" provides the most rea-

sonable means of portraying the multivariate scalar pdf. A more detailed comparative

assessment of the model predictions against the DNS data confirms the relative supe-

riority of the Dirichiet pdf even though it is mathematically shown that this frequency

cannot be justified for modeling of equilibrium flows.

With the use of the PF generated pdf, the autospectral density function and the

cross-spectral density function of the reacting scalars under equilibrium chemistry are

related to the frequency spectrum of the mixture fraction. This relation is very conve-

nient and is favored over previous models for predicting the spectral characteristics of

reacting scalars in the central region of the laboratory mixing layer and in any other

homogeneous flow configuration which yields an asymptotic ganssian pdf for the mix-

ture fraction. The correction to these spectral relations for asymptotic exponential

pdfs is provided, and the influence of the DamkShler number on both the auto- and

the cross-spectral density functions is assessed by the analysis of the DNS data.
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1 Introduction

In a recent article, Bilger et al. (1991) (hereinafter referred to as BSK) report the results

of extensive laboratory measurements on the compositional structure of a turbulent reactive

scalar mixing layer. The objective of these measurements is to portray the behavior of the

reacting scalar field in both "single-point spatial" and "two-time" statistical levels. In the

format presented, the data are very useful for assessing the influence of scalar fluctuations

on the rate of mean reactant conversion and also for examining the spectral characteristics

of reactive scalars in a chemical reaction of the type A + B _ Products. A wide range of

chemistry parameters is considered including both frozen and equilibrium flows. The extent

of the measured data together with the relative simplicity of the flow configuration provide

an excellent setting for appraising the performance of turbulence closures in accounting

for the role of scalar fluctuations (Komori et aI., 1991), and for predicting the spectra of

reacting scalars. The conclusion of this work advocates the need for mathematical models for

depicting the stochastic and the spectral character of reacting scalars for general applications.

Mathematical modeling of scalar fluctuations in stochastic treatment of turbulent react-

ing flows has been the subject of broad investigations since the pioneering work of Toor

(1962). One approach which has proven particularly useful is based on the probability den-

sity function (pdf) or joint pdf of scalar quantities (Libby and Williams, 1980; O'Brien, 1980;

Bilger, 1980; Pope, 1985; Girl, 1989; Kollmann, 1990; Pope, 1990). This approach offers the

advantage that all the statistical information pertaining to the scalar field is embedded within

the pdf. Therefore, once the pdf is known the effects of scalar fluctuations are easily deter-

mined. Because of their capabilities, pdf methods have been widely utilized for a variety of

reacting systems (see Libby and Williams (1994); Pope (1994) for recent reviews). A system-

atic approach for determining the pdf is by means of solving the transport equation governing

its evolution (Lundgren, 1967; Lundgren, 1969; Pope, 1985). In this equation the effects of

chemical reactions appear in a closed form, but modeling is needed to account for the trans-

port of the pdf in the composition domain of the random variables. This transport describes

the role of the molecular action. In addition, there are extra dimensions associated with the

- 2



composition domain which must be treated. These problems have constituted a stumbling

block in utilizing pdf methods in practical applications; developments of turbulence clo-

sures and numerical schemes which can effectively deal with these difficulties have been the

subject of numerous investigations within the past two decades (Libby and Williams, 1980;

Libby and Williams, 1994).

An alternative approach in pdf modeling is based on "field-parameterization" methods. In

these methods the pdf is not determined by solving a transport equation. Rather, its shape

is "assumed" in terms of the low order moments of the random variable(s). Obviously, this

method is ad hoc but it offers more flexibility than the first approach. Presently, the use

of parameterized methods is justified in cases where there is strong evidence that the pdf

adopts a particular distribution (Bilger, 1980; Pope, 1994).

Between these two approaches, obviously the first is preferable if an appropriate closure

is available to account for the effects of molecular action. In its application in turbulent

combustion, traditionally the family of models based on the coalescence/dispersion (C/D)

closures (Curl, 1963; Janicka et al., 1979; Pope, 1982; Kos£1y and Givi, 1987; Norris and

Pope, 1991), or linear mean square estimation methods (Dopazo and O'Brien, 1976; O'Brien,

1980) have been employed. These closures are plausible from a computational standpoint

and can be effectively simulated via Monte Carlo numerical methods (Pope, 1981). However,

there are several drawbacks associated with these closures which restrict their use for reliable

predictions (Pope, 1982; Kos_.ly and Givi, 1987). Some of these drawbacks are overcome in

the newly developed Amplitude Mapping Closure (AMC) (Kralchnan, 1989; Chen et aI.,

1989). This has been established in a number of recent validation assessments of the AMC

by means of comparison of its predicted results with those of DNS (Pope, 1991; Madnia el

al., 1992; Jiang et al., 1992; Frankel et al., 1993), and experimental (Frankel et al., 1992)

data.

Despite its demonstrated properties, there are some deficiencies associated with the AMC

which require further investigation. These are discussed in detail by Miller et al. (1993);

the most serious of these are: (1) the "single-point" nature of the closure, (2) the difficulties

- 3



associatedwith its numerical implementation especially in multivariate statistical analyses,

and (3) its inability to account for the migration of scalarboundsas mixing proceeds.The

first problem is shared with C/D models and indicates the deficiencyof the approachin

accounting for the variation of turbulent length and time scales. The other problems are

exclusiveto the AMC and can causedifficulties in its applications.

Considering the current state of progress in pdf modeling, it can be cautiously argued that

parameterized pdf methods are somewhat more "feasible" than the transport equation ap-

proach for practical applications. This is not to suggest the superiority of assumed meth-

ods. Rather, it is to encourage further research on the first scheme before it can be im-

plemented routinely. In this regard, Miller et al. (1993) and Frankel et al. (1993) have

conducted detailed investigations based on the two approaches. The general conclusion

drawn from these studies is that in cases where the AMC has proven useful, other ap-

proaches based on parameterized pdfs are equally effective. In the cases considered by

Miller et al. (1993), it is shown that in simple flows where the AMC can be employed,

the family of pdfs based on the Johnson Edgeworth Translation (JET) (Johnson, 1949b;

Edgeworth, 1907) can also be used. In fact, for the simple problem of binary mixing in

isotropic turbulence - a standard test case - the solution generated by the AMC (Pope, 1991;

Gao, 1991) can be viewed as a member of the JET family. Furthermore, due to established

similarities of the JET with simpler distributions belonging to the Pearson Family (PF)

of pdfs (Pearson, 1895), it can be argued that the PF can also be considered as a viable

alternative (Frankel et al., 1993).

There is a long history of the use of the PF pdfs in turbulent combustion, e.g. Rhodes

(1975); Jones and Priddin (1978); Lockwood and Moneib (1980); Peters (1984); Janicka

and Peters (1982); for recent reviews see Williams (1985); Givi (1989); Priddin (1991). In

most applications to date, this family has been used in the form of the Beta density of

the first kind (Pearson Type I and Type II distributions). This is due to the flexibility

of this density in portraying bimodal distributions. The properties of this density have

been examined in detail by Madnia et al. (1992); Miller et al. (1993) and Frankel et al.

(1993). According to these studies there are some similarities between the PF and the AMC,



as well as somedistinct differences. As indicated before,both thesemethods are utilized

in the context of a single-point closure. Therefore, in both cases the magnitudes of the

moments up to second order must be provided externally. Also, both methods suffer from an

inability to account for the shrinking bounds of the scalar domain as mixing proceeds. This is

manifested by the failure of both closures in producing a correct evolution for the conditional

statistics of the scalar; namely, the conditional expected dissipation and the conditional

expected diffusion. This can be troublesome and may produce significant errors, especially

in modeling of non-equilibrium flames. In modeling of equilibrium reacting homogeneous

flows, both closures are satisfactory regardless of the equivalence ratio (Madnia et al., 1992;

Frankel et al., 1993). However, the actual implementation of the AMC is very difficult,

if not impossible, for applications in non-homogeneous flows regardless of the chemistry

model. In such systems the mapping transfer function must be evaluated numerically, and

in non-equilibrium flows the multivariate form of the pdf must be considered. These require

serious investigations before they can be implemented routinely (Pope, 1991). In these cases

the application of the PF is much more straightforward but obviously cannot be justified

rigorously. The corresponding multivariate pdf is the Dirichlet frequency (Narumi, 1923;

Johnson, 1987; Johnson and Kotz, 1972; Wilks, 1962), and its mathematical implementation

is straightforward.

Description of the spectral characteristics of turbulent flows has also been a challenging issue

since the early contribution of Taylor (1938). This is again due to the system non-linearities;

and development of closures to account for the influence of convection in the spectral trans-

port equations continues to be an active area of research (Stanisi_, 1988; Lesieur, 1990;

Orszag, 1977). Naturally, the degree of difficulty is escalated when modeling of the spectral

density function of reactive scalars is attempted (Corrsin, 1961). In such modeling, in addi-

tion to the influence of convective fluctuations the role of the chemical effects must also be

considered. The challenge in developing reliable spectral closures for this purpose has also

been long-recognized (O'Brien, 1960; Corrsin, 1981). Recent efforts are devoted on develop-

ing closures by which the spectral transport equations are coupled with the single-point pdf

evolution equation (O'Brien, 1985; Jiang, 1992; Frankel et al., 1992). In these approaches,



the spectral closuresinclude two-point statistical information, and the pdf provides the clo-

sure to accountfor the influenceof chemistry.

The objective of this work is to developmathematical turbulence closuresfor modeling of

the fluctuations and the frequencyspectraof reactive scalarsin the context consideredin

the BSK experiments (and also in Saetran et al. (1989)). The goal is to analyze the influ-

ence of the scalar fluctuations on the rate of mean reactant conversion and to determine the

auto- and the cross-spectral density functions of the reactant fluctuations. In accord with

the experiments, a homogeneous mixing layer is considered and the models are appraised by

detailed comparisons against these laboratory data. Comparisons are also made with addi-

tional data generated here by Direct Numerical Simulation (DNS) of a spatially developing

planar mixing layer. The hope is to provide simple working relations for general applications.

2 Flow Configurations

A scalar mixing layer is formed when a traditional "grid-generated turbulent flow" is aug-

mented with a scalar gradient (Libby, 1975; LaRue and Libby, 1981; LaRue et al., 1981;

Saetran et al., 1989). This can be facilitated by either a temperature gradient, i.e. by heat-

ing half of the grids (Libby, 1975), or by introducing two different chemical species (BSK).

The schematic of the homogeneous reacting scalar mixing layer is shown in Fig. l(a). This

configuration consists of a unform mean streamwise velocity carrier inert gas contaminate

by two reacting scalars, A and B. In the BSK experiments, doping gases are injected and

are uniformly mixed in a carrier air stream. For the passive scalar experiments, nitric ox-

ide (NO) is injected into one stream; in the reacting layer experiments, NO and 03 are

introduced in separate feeds into the air. The concentrations of the reactive species axe

sufficiently small (of order of parts per million), allowing the assumption of constant density

and isothermal flow.

In the spatially developing mixing layer, in addition to scalar gradients there is also a cross-

stream variation of the mean velocities. The schematic diagram of this configuration is
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shown in Fig. l(b). Two co-flowingstreamstraveling at different velocities are mergedat

the trailing edgeof a partition plate. The reactants A and B are introduced into the high-

and the low-speed streams, respectively. In this flow, in addition to small scale turbulent

transport, the formation of large scale coherent vortical structures also plays a significant

role on the rate of chemical reactant conversion. Therefore, the spatial inhomogeneity of the

flow in the transverse direction makes the statistical analysis more challenging in comparison

to that in homogeneous flows.

There is a wealth of recent experimental data available pertaining to transport of reacting

chemical species in spatially developing mixing layer, e.g. Koochesfahani and Dimotakis

(1986); Masutani and Bowman (1986). However, the statistical results reported are not

as detailed as those furnished by BSK. Therefore, alternatively, data are produced here by

means of direct numerical simulation. DNS has proven very useful in capturing many fea-

tures of turbulent transport (Givi, 1994) and provides a powerful complement to laboratory

measurements for the analyses of turbulent reacting flows. The configuration considered

here is similar to that treated by Givi and Jou (1988); McMurtry and Givi (1992), but the

statistical analyses are conducted in a format similar to those in the BSK experiment.

3 Formulation Modeling and the Computational Pro-

cedure

3.1 Modeling of the Reactant Conversion

In both flows, all the chemical species are assumed thermodynamically identical and the

fluid is assumed to be calorically perfect. The value of the molecular Schmidt number is

set to unity and it is assumed that the two reactants are completely segregated at the

inflow. With unity normalized mass fractions of the two species at their respective feeds, a

mixture fraction denoted by f is defined (Williams, 1985; Bilger, 1980; Bilger, 1989) to have
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normalizedvaluesof 1 and 0 in the streams containing A and B respectively. Under chemical

equilibrium, the statistics of the reacting field are directly related to those of the mixture

fraction. Therefore, univariate statistical analyses are sufficient. In non-equilibrium flows,

the joint statistics of the reacting variables are required. The coordinates x and y denote,

respectively, the streamwise and the cross-stream direction in both configurations (Fig. 1).

Due to the single-point nature of the statistical treatment, all the moments up to second

order serve as "inputs" for the pdf parameterization. In modeling of the homogeneous

flow, the procedure developed by Libby (1975) is followed. Turbulent convective fluxes

are modeled by the gradient diffusion closure with a constant turbulent viscosity u. The

"self-similar" behavior of the layer is predicted within the domain of the transformed cross-

stream direction, 77 = Y/_, where Y = v/M, X = x/M (M is the mesh spacing) and

u" = u/_IM (U is the streamwise velocity, and tilde denotes ensemble-averaging). With

this framework, the modeled transport equations governing the ensemble mean value of the

mixture fraction, #7, and its variance, f"-_ (prime denotes fluctuations from the mean value)

are given, in order, by:

r/dr
dr/--_ + 2 dr/ - O, (1)

-c, + +2 - c."* = o, (2)

where C1, C2 are empirical constants. In the limit of infinitely fast chemistry, the pdf of the

mixture fraction is sufficient to determine all the statistical information pertaining to mass

fractions of the species. The most convenient of the PF is the Pearson (1895) Type I in the

form of the Beta density of the first kind:

1

Pf(¢) - B(a, fl) ¢_-'(i - ¢)#-'. (3)

Here, B(a, fl)is the Beta function: B(a, fi) = r(.)r(#)/r(. + #), r is the Gamma function,
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and the parameters a, fl are uniquely determined by )7 and f"-_ (Abramowitz and Stegun,

1972). With this density, all the moments of the mass fractions of the reactants are expressed

in a closed analytical form:

1

1 1 /(fs -- f)"f_-l(1 - f)_-I df
= B(a, fl) (1 - fs)"Yo

1 1 (:)= B(:,_) (1--y,)- :E (_y,),f/co-,+c--,_(1_ ::-, d:,
r=l .f°

r2r_ =o, (4)

provided that n, m # 0. Here, Y/indicates the mass fraction of i-th species, and fo denotes

the stoichiometric value of the mixture fraction. For unity normalized mass fractions at

free streams, fo = 1/2. Analytic forms of these integrals are easily attainable and can be

expressed in terms of the incomplete Beta density function (Madnia et al., 1992):

1 1,
:T1o(_,fl ) -- f f_-'(1 - f)_-adf.

B( ct, fl) dO
(5)

In non-equilibrium flows, the transport equations for the first two moments (and/or cross

moments) are coupled with the pdf. The transport equation for the ensemble-average of the

mass fractions of the reactants, say species A is given by:

aS r/d_ x_q = o (6)
dr/-''T + 2 dr/

where _'A denotes the reaction rate of species A. The normalized form of this rate is given

by _bA = DaYAYB; Da is the Damk6hler number (BSK). The closure for the evaluation of

the mean reaction rate is provided by the pdf. Here, the Dirichlet frequency (Johnson, 1987)



is proposedfor this purpose:

r(_, + _2+... + &+,)
P(¢"¢2"'¢") = g(_,_;5.-.r-_(_+_)(¢,)_,-'(¢_)_,-'(1- ¢,- ¢_-...- ¢.:-÷,-,

(7)

n

whereej >O,j=l,n; _/,j < 1; and(k >0, k=l,n+l. Then+lparameters(_'s)
.i=1

can be evaluated if the values of an equal number of moments are supplied. Therefore the

knowledge of at least one second order moment is necessary, a recognizable feature of single-
n

point closures. It is straightforward to show that the product moments of order r = E rj.
j=l

with respect to the origin are:

r(_,)r(_).., r(_.)r(_, + _: +... + _.+, + _, + ,: +... + ,.)'
(8)

where S. is the support of P(¢) in the composition space.

value of the mass fraction of the i-th species is:

With this, the ensemble mean

¢i = .+, , (9)
E _k

k----I

and the ri +rjth order correlation (product moment with respect to the mean values) between

species ¢i and ¢,¢ is:

]lrirj = Y_ Y_(-I) '+k (¢/)'(_
l=l k=l

+ 1)...(_i + ri-l- 1)_j(_j + 1)...(_ i + ri - k- 1)
n+l n+l

(E _m+l)...(E _._+ri-l+rj-k-1)
m----1 m--I

(10)
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Therefore, the variance of species i and the covariance of species i and j are, in order:

n+l

6/(E 6, - 6,)
k=l ,._.,., = ,fi_j

_'_= .+, ,.,+, ; _/',_j (II)n+1
( E _k)2( E _k + 1) (._1 _k)2( E _k + 1)
k=l k=l k=l k=l

n

A particularly pleasing feature of the Dirichlet density is the condition _ _bi < 1. This
j=l

constraint is in accord with the law of conservation of species. However, the parameterization

of the pdf is somewhat "overdetermined" in that it is not clear which combination of the

moments is to be used to specify the parameters of the pdf (values of _j). In the reaction

scheme considered by BSK, n = 2; thus the parameterization requires the knowledge of

three moments. The mean values of the two reactants, YA, YB are obvious choices; but the

specification of the third moment is not clear. Here, we consider two options: (1) the scalar-

energy Q = y_2 + y_, and (2) the covariance (unmixedness) C = Y_Y_. These schemes are

enacted with the relations:

(12)

where:

with the first option, and

(13)

(14)

for the second one. This overdetermination is not encountered with the use of the multi-

variate gaussian pdf, typically used in combustion modeling e.g. Bockhorn (1988a); Bock-

horn (1988b). However this frequency has serious drawbacks in requiring an infinite support

(Leemis, 1986) and not satisfying the law of conservation of species. The transport equations

for the second order moments (and cross moments) are of a similar nature. For example, for



the unmixedness:

--.-

2drA dYs
+ c YAY + x( Ar + 0. (15)

The only additional modeling requirement is the specification of the empirical constants

C1 and Cu. Here, the constants are determined in such a way as to yield the best agree-

ment with the laboratory data for the first two moments, as will be discussed in Section

4. The resulting system of nonlinear coupled differential equations is solved by means of

the Newton-Raphson iterative scheme. The derivatives are approximated via a second order

accurate finite-difference scheme utilizing 51 grid points within the domain -4 < 7? <_ 4.

The independency of the results to the selected number of grids and the size of the domain

was confirmed.

The procedure followed for model assessment in the spatially developing mixing layer is

essentially the same, but the input moments are obtained by DNS. The computational

procedure is based on a hybrid finite difference-pseudospectral scheme. A fifth-order compact

parameter difference scheme (Carpenter, 1990) is used for discretization in the streamwise

direction and a spectral collocation method (Givi and Madnia, 1993) employing Fourier

expansions for the cross-stream discretization. Time discretization is achieved by the Adams-

Bashforth scheme. The computational domain is bounded by 0 < x < 646,o,-166,o <

y <_ 166_, where 6_ is the vorticity thickness at the inflow. The resolution consists of

256 finite difference points and 128 collocation nodes. With this resolution, reliable DNS

with a Reynolds number Re = 200 and DamkShler numbers up to Da = 10 (based on the

mean streamwise velocity difference and the vorticity thickness at the inlet) is possible. The

inflow condition for the streamwise mean velocity profile is given by a hyperbolic tangent

function. The free stream velocity ratio is set arbitrarily equal to _ = 3. The flow is forced
v2

randomly at the inflow to expedite the formation of large scale structures within the domain

considered. The maximum amplitude of the perturbations is set equal to 5% of the mean

flow. For a detail description of the numerical procedure we refer to Givi and Jou (1988);

McMurtry and Givi (1992).
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3.2 Frequency-Spectra of Reacting Scalars

With the assumption of ergodic flow, the temporal correlations of the scalar mass fractions

are defined (Bendat and Piersol, 1986).

RAA(")= YA(t)YA(t+ _') (16)

is the autocorrelation of the mass fraction of species A, and

RAs(r) = YA(t)Ys(t+ _) (17)

is the cross correlation of the mass fractions of the two species A and B. Associated with

these correlations are the autocovariance function and the cross-variance function, defined

respectively as:

_2

oA._(-,-)= R,_A(-,-)-Y.4,O,,s(,')= RAs(,')-_. (18)

The autospectral density function of scalar A is the Fourier transform of its autocorrelation:

FSAA(f_) = RAA(r)exp(--2rf_r3)dr, 3 = V '-2"i", (19)
O0

$2 is the frequency. Similarly the cross-spectral density function for scalars A and B is:

SAS(N) =/-_oo RAa(r)exp(-2:rl2rl)dr. (20)

It is customary to express the cross-spectrum as:
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SAB(f_) = ISAB(S_)Iexp [--3OAB(£)] (21)

where O(£t) is the "phase," and the "coherence function" is defined by:

ISA (n)l
= (22)

It is desirable to relate the time-correlations and the frequency spectral densities of the

reacting scalars to the frequency-spectrum of the mixture fraction. This, in general, is a

formidable task as the relation (if it could be obtained) is dependent on the chemistry. Since

the primary influence of chemical reaction is at diffusion scales, it is impossible to provide

simple mathematical relations amongst the various spectral density functions. In the limit

of equilibrium chemistry, the situation simplifies considerably as shown by KosLly (1993).

However, an exact determination still requires multi- (in this case, two-) time level stochastic

analyses. In the presence of spatial symmetry, it is possible to simplify the relations further.

For example, at the center of the scalar mixing layer in the BSK experiments (r/= 0, s7 = x),

all the statistical properties of the two reactants are identical. Based on this symmetry it is

easy to show for Da --.', oo (Kos_,ly, 1993):

1

RAa(_')ln=o,o,,--.oo = = [RFF(r)+ (23)

1

RaB(r)l.=0,z_a--_ = RBa(r)I.=o,Da..._ = _ [--RFF(r) + RF.F.(r)].= o • (24)

where F = 2f - 1 and F" = [F[. Similar relations hold for the spectral densities of A

and B in terms of those of F and F'. Therefore, for the spectral densities normalized

by their respective variances, it is straightforward to show (from here on, the subscript

rI = O, Da ..-.* oo is dropped):
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_AA(n)= SAA(_)__ _B_(n)= 4--_1[_F_(_)_ + _'F'(_)_] (25)

SAB(_) 1 (SFF(_)-F'& I (26)

To complete the formulation, the statistics of F, IF[, A and B are required. Kos£1y (1993)

assumes a gaussian pdf for F from which all the statistics are subsequently determined. This

pdf is justified only at regions far away from the inlet. In this particular experiment this

assumption is reasonable as the data show an approximate gaussian pdf (not considering the

discrepancy associated with the infinite support). In other homogenous flows, however, this

approximation can yield significant errors (Frankel et al., 1993) since at the initial stages of

mixing the pdf is composed of two approximate delta functions, i.e. complete segregation.

At such stages, the use of the PF generated pdfs is more reasonable. In particular, the

Pearson Type II is justified at all the locations along the center of the layer. With this

frequency, Eqs. (3)-(4) with a = fl yield:

F 2 = F'2 = F-2 -
2a+ 1

= r,_. (27)

Therefore:

_ :,2 --
Yna= 2 _,_) F.r2= r.2_ C2, C(r.)= r(_) . (28)' v_r(_ + ½)"

Substituting Eqs. (27)-(28) into Eqs. (25)-(26) yields:

E2 E2 _ G2 . . .
SAA(_)= SBB(_)= 2r: --C__rr(n) + _ : _Sr r (_), (29)
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_ 1- 2 (30)

These equations would be identical to those suggested by Kos£1y (1993) only when E _ 0.

In this limit, the Beta density approaches a gaussian pdf (Leemis, 1986); therefore:

f_2 _ G2_ _r - 2 (31)

which is valid only at final stages of mixing in homogeneous flows. For the other limit-

ing conditions near the inlet of the BSK's mixing layer, or the initial stages of mixing in

homogeneous flows (Madnia et al., 1992) we have E2 = G = 1. Therefore, the physical

requirement:

= SFF(_)I*=O, s"B( )l=o = -I,
S,A

(32)

can be only realized via the relations provided by Eqs. (30)-(31). To demonstrate this point

more clearly, the variations of the parameters appearing in Eqs. (29)-(30) are shown in Fig.

2 in terms of E. In the form presented E = 1,0 denote the initial and the final stage of

mixing, respectively. Note that only the values at ]g ---, 0 are in accord with KosMy's results.

All the results presented here are based on the assumption of an asymptotic gaussian pdf for

the variable F. However, the results of numerous recent laboratory measurements (Castaing

et al., 1989; Sano et al., 1989; Castaing et al., 1990; Jayesh and Warhaft, 1991; Jayesh and

Warhaft, 1992; Gollub et al., 1991; Lane et al., 1993) and numerical simulations (Metais and

Lesieur, 1992; Kimura and Kraichnan, 1993; Kerstein, 1991; Pumir et al., 1991) suggest that

the exponential distribution may provide a more reasonable representation of the pdf in high

Reynolds number flows. The family of exponential pdfs is represented by:
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( IcJq Pf(¢,q) = C(K,q)exp K'(--_,a)] ' (33)

where a is the standard deviation and C = [2K_F( +l_)] -1 The value q = 2 corresponds
q

to a gaussian pdf and q = 1 implies a Laplace (double exponential) density. To use this

density for the evaluation of the spectral density functions, Eqs. (25)-(26) are represented in

the simpler form:

= = + , (34)
H+I H+I

SAB(a) 2
SAA([._) -- 1- . (35)1 + H'cf "r*(_)

sF_ (_)

where H = F"2/F .2. Following the same procedure as outlined above, Eq. (33) yields:

3 (36)qr( )r( q )

This implies that the parameter H(q) is in the approximate range 0.25 _< H < 1, depending

on the degree of the exponential at the asymptotic stage of mixing. For q = 2, the value

U = 0.36 is that suggested by Kos£1y (1993).

Based on the results presented here, we recommend Eqs. (29)-(30) for relating the autospec-

tral and the cross-spectral density functions of the reacting scalars to the spectrum of the

mixture fraction in homogeneous flows with symmetric pdf of the mixture fraction. These

results are valid if the asymptotic stage of mixing yields gaussian statistics. For the general

family of the exponential scalar pdfs, the corresponding relations are given by Eqs. (34)-(36).

Again, it is emphasized that these relations (and also those provided by Kos£1y (1993)) are

only valid in the limit of equilibrium chemistry. It is impossible to generalize these results

for non-equilibrium chemistry flows. Also, it is very difficult, perhaps impossible, to provide
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analogousrelations when the pdf is non-symmetric, i.e. at off-center regions of the labora-

tory flow and/or in other homogeneous flows where the local compositional structure is not

in stoichiometric proportions.

4 Results

4.1 Modeling of the Reactant Conversion

The results of our parametric study indicates that the best overall match between the model

predictions of the mixture fraction and the experimental data of BSK is established with

C1 = 0.89 and C_ = 5.72. LaRue et al. (1981) suggest 6'1 = 0.89, C2 = 2.25. The difference

in the magnitude of C_ is attributed to the observation that the peak of the scalar variance in

the measurements of LaRue et al. (1981) is about 30% higher than that in BSK. In BSK, data

are provided of reacting flows with several values of the DamkShler numbers, stoichiometric

mixture fractions, and the Reynolds number. In all the cases, the measured results for the

mean value of the mixture fraction agree well with model predictions as shown in Fig. 3(a).

In this and subsequent figures 77° = r//6, where 6 = r/(j7 = 0.9) - r/(97 = 0.1). The measured

variance of the mixture fraction show a dependence on the Reynolds number. The results in

Fig. 3(b) indicate a reasonable agreement between the predicted results and the experimental

data for Re = 5,300. For Re = 11,700, the model fails to capture the "valley" at the center

of the layer. This is due to the gradient diffusion closure and also the independency of the

model to the Reynolds number. Transverse variations of the skewness and kurtosis of the

mixture fraction are shown in Figs. 4 and 5 for Re = 11,700. The model results are based

on the Beta frequency yielding closed form analytical expressions for higher order moments.

While the accordance of the predicted results with experimental data is encouraging, the

local minima and maxima portrayed by the data are not well-predicted. Noticeably, the

"kink" in the skewness profiles as suggested experimentally is not captured. The results

based on this pdf for predicting the statistics of reacting scalars under equilibrium condition

are given in Figs. 6 and 7. These results are obtained by closed-form analytical expressions
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basedon Eqs. (4)-(5). In Fig. 6, the cross-streamvariationsof the normalizedmassfractions

of the reactantsare in reasonableaccordwith measureddata. A somewhatsimilar level of

agreementis observedin the profiles of the reactants' standard deviations as Fig. 7 shows

that both the distribution and the peakof the deviations arepredicted well. The maximum

deviation is near the centerof the layer.

Of greater interest is the statistical behavior of the reactants' mass fractions in the non-

equilibrium chemistry flow. On account of the fact that the statistics of mixture fraction

should be invariant with the reaction rate, it is required to tailor the model accordingly.

Therefore, in this case the magnitudes of the empirical constants C1 and C2 are prescribed

in such a way as to yield the best match to the first two measured moments of the reac-

tants' mass fractions, of course in accord with the respective parameterization scheme. The

statistics of the mixture fraction are evaluated subsequently. This procedure is followed for

both of the cases reported in the BSK experiments: Da = 0.3 and Da = 1.81. The com-

parison between the predicted standard deviation of the mixture fraction and the measure

data is shown in Fig. 8. With the degree of freedom available in the matching, the Dirichlet

density parameterized by the scalar-energy yields better overall agreements. However, the

results are not DamkShler number invariant. The consequence of this will be discussed later.

Figures 9 and 10 show the profiles of skewness and kurtosis of the mixture fraction. Both

Dirichlet closures perform well and the results are in a better agreement with data than

those based on the univariate Beta density (Figs. 4-5). It is appropriate here to note that

the multivariate gaussian pdf yields uniform values of higher order moments (skewness = 0,

and kurtosis = 3); thus despite possessing more statistical information, i.e. a higher-degree

of freedom for parameterization, this pdf is less superior to the Dirichlet density. The final

performance test of the models is their capability of predicting the statistics of the reacting

scalars under non-equilibrium conditions. In Figs. 11 and 12 results are presented of the

mean product mass fraction and the scalar-energy, respectively. For consistency, the empir-

ical constants are optimized for each model such that the predicted statistics of the mixture

fraction are in accord with the experimental data. These figures also confirm the relative

better performance of the scalar-energy parameterized Dirichlet.
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A more elaborate validation of the models requiresexamination of the higher-order joint

moments. Sincethesemomentsarenot measuredin the experiments,they areprovided here

by DNS of the spatially developing mixing layer. The structure of this layer as depicted

by DNS is shown in Fig. 13, wherea plot of the instantaneousmixture fraction contours is

presented.Statistical analysesof the data areconductedat regionsfar awayfrom the inflow

sothat the influenceof randomperturbations aresufficiently sensed.For statistical sampling,

4,000 realizations are used. The sufficiency of this number of realizations was confirmed

by detailed comparisonsagainst resultsobtained at higher sampling rates. The conclusions

drawnfrom thetrends discussedbelowareindependentof the streamwiselocation considered.

Thus results arepresentedhere only for x = 47.56w denoted by station I in Fig. 13.

A detailed assessment of both Dirichlet closures indicates the superiority of the one parame-

terized with the scalar-energy. For example, Figs. 14 and 15 show the cross-stream variation

of the moment yj4y_ for two values of the Damk6hler number. These results support the use

of the scalar-energy for pdf parameterization. Also, the figures suggest that the agreement

improves somewhat as the Damk6hler number is increased. However, the use of neither of

these models can be recommended when the chemistry is in complete equilibrium. In the

limit of infinitely large DamkShler number all the joint moments of the scalar are identically

! !zero. The use of the covariance Y_Y_ = -YaYs yields _1 = _2 = _3 = 0; thus the model fails.

The use of the scalar-energy avoids this failure but is incapable of satisfying the orthogonal-

ity condition (Eq. 4). In non-equilibrium flows, as the rate of reaction is increased but with

finite DamkShler numbers, the covariance-quantified distribution quickly approaches the sin-

gularity. This is demonstrated by a comparison of Figs. 14 and 15 where the results indicate

a mild improvement in the scalar-energy parameterized model, but little or no change in the

model based on the covariance.

Despite the caveat on the use of Dirichlet density for flows under equilibrium chemistry, it

is useful to examine its behavior in modeling of higher order moments. Figures 16-17 show

Vt2VI2 Vt3V othe profiles of the joint central moments , A • B, and . A * B" The results indicate that the

Dirichlet multivariate density parameterized by the scalar-energy and the univariate Beta

frequency yield a similar level of agreemenlL with the DNS data. No distinct superiority is
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establishedvia the useof either of the closures. However,due to univariate nature of the

Beta pdf, the orthogonality condition is identically satisfied.

Finally, it is useful to compare the predicted statistics of the mixture fraction with the

DNS data in non-equilibrium flows. This comparison is made in Figs. 18 and 19 for the

skewness for both DamkShler numbers. The results are also compared with the predictions

based on the univariate Beta pdf as parameterized by the DNS data. These figures indicate

that both closures behave somewhat similarly without a dominant superiority of any of the

two. This trend is observed for all the other moments of the mixture fraction (not shown

here). However, the Dirichlet density does not yield an exact Beta frequency for the mixture

fraction. It is straightforward to demonstrate that with the assumption of a Dirichlet density

for the reacting scalars, the univariate pdf of the mixture fraction is a Beta density if the

chemistry is frozen. That is, along the line ffl + _b2 = 1 for n = 2 in Eq. (7). The Dirichlet

density yields a marginal Beta pdf for each of the scalars; thus a Beta distribution cannot

be obtained for the mixture fraction. Therefore, in the limit of infinitely large DamkShler

number, the use of the univariate Beta density is more appropriate. An optimum value of

a finite Damkfhler number below which the Dirichlet density is to be recommended, cannot

be specified. Due to computational limitations, it is not possible to perform DNS of very

large (but finite) DamkShler numbers. For the highest reaction rate considered in the BSK

experiments, the Dirichlet density performs reasonably well.

4.2 Frequency-Spectra of Reacting Scalars

Many important spectral features of the reacting scalars can be exhibited by results extracted

from the DNS of the spatially developing mixing layer. Here these results are presented of

the layer under the conditions of frozen, equilibrium and non-equilibrium chemistry. The

normalized autospectrum of scalar A is shown in Fig. 20 for several values of the DamkShler

number at streamwise locations of z = 48,_ and z = 166_ (stations II and III in Fig. 13)

along the centerline (y = 0). This figure indicates that at low frequencies, the influence of

chemical reaction is not significant as the spectrum is influenced primarily by hydrodynamics.
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At 12 = 0 the amplitude must decrease as the DamkShler number is increased in order to

accommodate for the decrease of the integral time-scale due to chemistry. An opposite trend

is observed at the other end of the spectrum. At high frequencies, the autospectral density

becomes more energetic as the magnitude of the DamkShler number is increased, and at

the equilibrium limit the spectrum range extends to very high frequencies. This behavior is

not observed in the results of BSK and Kos_ly (1993) since a small frequency range, limited

at the smallest scales to the hydrodynamics frequency is considered. In all the cases, the

autospectrum exhibits local peaks at fl = 1.086Hz (for x = 46_) and at fl = 0.543Hz (for

x = 166_,). These values correspond approximately to the most unstable frequency of the

mean flow and its first subharmonic (Michalke, 1965). Note that x = 4_, corresponds to the

approximate location where the first vortical roll-up occurs, and at x = 166_, the pairing of

neighboring vortical structures is observed. After this point, the additional vortex pairings

which occur downstream yield the shift of the spectra peaks towards higher frequencies.

Since the area under the normalized autospectrum must be identical in all the cases (Bendat

and Piersol, 1986), the increase of energies at high frequencies must be compensated by an

energy decrease at low frequencies. This causes the curves of the spectral density functions

to cross over each other at some intermediate values of the frequency. This behavior is

observed in Fig. 20 and also in the results of BSK and Kos_ly (1993).

In Fig. 21 results are presented of the normalized autospectral density function of F, F*, and

the reactant A under equilibrium condition. Although SAA and SF'F" can be determined

from the F-time series data, they cannot be calculated from _,rr directly unless the exact

two-time pdf of the F-process is known. Note that unlike the conditions at the center of

the symmetric configuration in the BSK experiments, here SEE" _ O. Thus, Eq. (29) or

Eq. (34) cannot be used. However, the DNS results do indicate that the amplitude of S.4.4

falls between SEt and Sr.r. at high frequencies. At low frequencies, due to the influence

of hydrodynamics in causing asymmetric effects, the use of our analytical relations is not

appropriate. These figures also show that the local peaks in the F- and A-autospectra are

not observed in the F'-autospectrum. This is expected since the spectrum of the absolute

value of a process forced at a single particular frequency (like the process corresponding to
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the transport of a single-eddy), contains energy at all the harmonics of that frequency. Since

the absolute value of a process represents a non-linear system, the analytical determination

of its spectrum is difficult. However, it is reasonable to expect that the autospectrum of

F ° decays slower than that of F at high frequencies and the results in Fig. 21 do show this

behavior.

The cross-spectral density function is characterized by the coherence function and the phase.

High coherence between two random processes usually indicates that the two processes are

either exactly in phase or out of phase (O = 0, or _r). Low coherence implies indeterminate

phase values (Bendat and Piersol, 1986). In Figs. 22 and 23 results are presented of the

coherence and the phase in the cross-spectral density functions of scalars A and B for different

magnitudes of the DamkShler number. In the frozen chemistry limit, the coherence is unity

and phase is equal to lr at all frequencies. This is expected as the reactants are completely

out of phase. At low frequencies the coherence is high and the non-equilibrium chemistry

results are bounded by those corresponding to the frozen and equilibrium limits. In this

range, the magnitudes of the phase for all cases are near 7r. At frequencies which correspond

to the local peaks of the autospectra (Fig. 20), there are also high local coherence peaks.

At the intermediate frequencies where the autospectra curves cross, the coherence drop and

also cross over each other. The magnitude of the phase in this frequency range is random

and as speculated by BSK this behavior is associated with the reactive-diffusive balance in

the spectral transfer due the large-scale eddies and chemical reaction. After dropping to

near zero at intermediate frequencies, the coherence rise at higher frequencies with a reverse

effect of the DamkShler number. That is, the coherence increases as the DamkShler number

increases. In this range, the phase is near zero (0 = 0, 2r) for all reacting cases. This

behavior is in fact predicted by Eq. (35) in that as SEE _ O, SF*F* _ 0 (SF*F* >> SFF),

then ,-,cAB= SAA. Kos£1y (1993) also recognizes the possibility of increasing coherence with

a zero phase at high frequency. However, due to lack of experimental data this behavior

could not be observed. The DNS results here capture this trend.



5 Concluding Remarks

The experiments of Bilger et al. (1991) provide an extensive data set for assessing the

role of turbulence fluctuations on the rate of reactant conversion and on the spectra of

reactive scalars in turbulent shear flows. The objective here is to provide mathematical

models to reproduce these data with the hope of suggesting simple working relations for

predictive applications. Based on comparative assessment against these measured data and

additional data generated here by direct numerical simulation, we recommend the Pearson

family of probability density functions for statistical description of scalar transport in flows

of this type. In particular, the Dirichlet frequency parameterized by the scalar-energy is

recommended, in the absence of better alternatives, for modeling of the reactant conversion

rate in non-premixed reacting mixing layers under non-equilibrium conditions. In the limit

of frozen chemistry this density yields a Beta frequency for the marginal pdf of each of the

reactants. This unlvariate frequency is recommended for stochastic treatment of both frozen

and equilibrium flows.

In the context considered, the models do not yield a consistent limiting condition for equilib-

rium flows. In this limit, the Dirichlet density does not satisfy the orthogonality condition of

the reactants and also does not yield a Beta density for the mixture fraction. This is due to

inability of the distribution to include all the first and second order moments in its param-

eterization. This problem is well-recognized in statistics and (classical) biometric literature

(Johnson, 1949a). In principle, it is possible to construct a modified multivariate Pearson

density which overcomes this predicament (Johnson, 1987). However, the parameters of the

model cannot be algebraically related to input moments (that is, the pdf cannot be analyt-

ically integrated); thus the model cannot be recommended for practical applications. The

other known multivariate frequencies such as the joint gaussian (and distributions gener-

ated by the JET and other schemes), do not share this problem but they do not possess

appropriate physical properties to justify their use for combustion applications.

The other alternative for pdf description is to utilize a transport equation governing its

evolution (Pope, 1985). However, despite concentrated recent efforts it is not yet clear what
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physical closure and/or computational schemesare to be used in the implementation of

this scheme.Currently, the most promising methodologyfor this purposeis the Amplitude

Mapping Closure(Chen et al., 1989; Kralchnan, 1989), but it is not yet at a level suitable for

modeling of multi-scalar transport in non-homogeneous flows (Pope, 1991). The results of

extensive recent work (Miller et al., 1993; Frankel et al., 1993; Madnia et al., 1992) indicate

that at situations where the AMC can be enacted, other schemes based on the PF and the

JET perform equally well. Amongst all available schemes, the PF is the simplest to use and

until the shortcomings associated with the use of the pdf transport equation are resolved,

the PF (or other parameterized pdfs prescribed based on known physics) will likely remain

as the method of choice for practical applications.

With the use of the PF family of pdfs, the spectral density functions of the reacting scalars are

related to the frequency-spectrum of the mixture fraction. These results are more general

than those provided previously in that the evolution of the mixture fraction pdf from an

initial double-delta profile to an asymptotic gaussian distribution is taken into account. In

the asymptotic limit of mixing completion, the results are in accord with those suggested

by KosS.ly (1993). The corrections to the frequency spectra for asymptotic exponential pdfs

are also provided. These mathematical relations are valid for applications in homogeneous

mixing layers such as the configuration considered by BSK. However, the trends portrayed

by these relations are also in accord with those provided by DNS of the spatially developing

reacting mixing layer.

At this point it is instructive to reiterate the limitations of the model in the format utilized

in this work. The primary drawbacks are associated with: (1) modeling of turbulent fluxes,

(2) the single-point nature of the statistical description (3) the restrictive applicability of

the equations governing the spectral densities, and (4) the non-generality of the frequencies.

The first three problems are also encountered in approaches based on a pdf transport; the

last problem is particular to the model here. The first problem manifests itself in the lim-

itations of the gradient diffusion closure and is present in any pdf approach in which the

statistics of the velocity field are not included (Givi and McMurtry, 1988). It is now well-

recognized that this closure is not capable of capturing the spatial transport of the scalar
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pdf in non-homogeneous turbulence, particularly when the flow is dominated by organized

coherent structures (Koochesfahani and Dimotakis, 1986). To remedy this problem, one can

potentially use higher order models such as spectral closures (Frankel et al., 1992); but the

implementation of these models in non-homogeneous flows is extremely difficult, if not im-

possible. The second problem infers that the errors associated with modeling of the first two

moments of the scalar result in the contamination of the pdf and thus all the higher order mo-

ments. To rectify the situation, one can use multi-point statistical closures; but again their

use is not practical at this point (Pope, 1990). The third limitation is understandable as the

spectral manipulation of nonlinear systems is a challenging task, which sometimes is not even

recommended (Bendat, 1990). Here with the assumption of equilibrium chemistry and with

the spatial symmetry of the problem, it is possible to relate the spectra of the reactants to

the frequency spectrum of the mixture fraction. For problems without such a symmetry, the

final results can be only obtained by the numerical integration of the equations relating the

correlation functions. In non-equilibrium flows it is impossible to provide analogous relations

due to closure problems encountered in determining the correlation functions (Corrsin, 1958;

Lee, 1966; Corrsin, 1981). Even in the form presented, the final equations require the knowl-

edge of the spectral densities of the absolute value of the mixture fraction. Without pertinent

available data (from laboratory experiments or DNS), the evaluation of these densities require

the knowledge of "two-time process" of the signal. Note that for the simple case of an ergodic

gaussian stochastic process, an analytical evolution of these spectral densities is infeasible

as realized in the literature on nonlinear system identifications (Bendat and Piersol, 1986;

Bendat, 1990). Finally, the drawbacks associated with the non-generality of the present

model, or other approaches based on parameterized pdfs, are well-recognized. In applying

the PF generated pdf for modeling of other types of turbulent combustion systems (e.9 pre-

mixed flames, temperature dependent reaction rates, etc.) one must have some knowledge

of the systems before utilizing a priori schemes.
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Figure captions

Figure 1. Schematic diagrams of (a) the homogenous scalar mixing layer, and (b) the spatially

developing mixing layer.

Figure 2. Variation of the parameters of Eqs. (29)-(30). The points identified by • correspond

to the results of Kos£1y (1993).

Figure 3(a). Cross-stream variation of the mean value of the mixture. Frozen chemistry.

Figure 3(b). Cross-stream variation of the standard deviation of the mixture fraction. Frozen

chemistry.

Figure 4. Cross-stream variation of the skewness of the mixture fraction. Frozen chemistry.

Figure 5. Cross-stream variation of the kurtosis of the mixture fraction. Frozen chemistry.

Figure 6. Cross-stream variation of the mean values of the reactants' mass fractions under

equilibrium chemistry.

Figure 7. Cross-stream variation of the standard deviations of the reactants' mass fractions

under equilibrium chemistry.

Figure 8. Cross-stream variation of the standard deviation of the mixture fraction.

Figure 9. Cross-stream variation of the skewness of the mixture fraction.

Figure 10. Cross-stream variation of the kurtosis of the mixture fraction.

Figure 11. Cross-stream variation of the mean product mass fraction.

Figure 12. Cross-stream variation of the scalar-energy.

Figure 13. Plot of the mixture fraction contours.

V 14Vt 2Figure 14. Cross-stream variation of the moment, A • s for Da = 0.3.

v,4v, 2 for Da = 10.Figure 15. Cross-stream variation of the moment -,4 • B

Figure 16. Cross-stream variation of the moment v_2v_.,A"B2" Equilibrium chemistry.

Figure 17. Cross-stream variation of the moment y_3y_. Equilibrium chemistry.

Figure 18. Cross-stream variation of the skewness of the mixture fraction (Da = 0.3).

Figure 19. Cross-stream variation of the skewness of the mixture fraction (Da = 10).

Figure 20. Aut0spectrum density function of the mass fraction of species A at (a) x =

33



46w,y = 0, (b) x = 166,,,,y = O.

Figure 21. Autospectra of F, F" and A (Da ---+ec) at (a) x = 46,,,,y = O, (b) x = 166_,, y = 0.

Figure 22. Coherence between reactants A and B at (a) x = 46_,, y = 0, (b) x - 166_, y - 0.

Figure 23. Phase between reactants A and B at (a) x -- 4_, y = 0, (b) x = 166_, y - 0.
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